
Current in a two-dimensional ratchet with an asymmetric unbiased external force

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 6061

(http://iopscience.iop.org/1751-8121/40/23/004)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/23
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 6061–6070 doi:10.1088/1751-8113/40/23/004

Current in a two-dimensional ratchet with an
asymmetric unbiased external force

Bao-quan Ai1, Feng-guo Li1 and Liang-gang Liu2

1 Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering
and Laboratory of Photonic Information Technology, South China Normal University,
510006 GuangZhou, People’s Republic of China
2 Faculty of Science and Technology, Macau University of Science and Technology, Macao

E-mail: aibq@scnu.edu.cn

Received 10 January 2007, in final form 12 April 2007
Published 22 May 2007
Online at stacks.iop.org/JPhysA/40/6061

Abstract
We study the transport of an overdamped Brownian particle moving in
an asymmetric two-dimensional periodic potential in the presence of an
asymmetric unbiased external force. Based on the effective potential
approach, the two-dimensional system is simplified to the one-dimensional
system. The expression of the net current is obtained at a quasi-steady-state
limit. The competitions among the asymmetric parameter between the
potentials, the coupling parameter of the potential and the temporally
asymmetric parameter of the external force lead to current reversals. There may
be three optimized values of temperature at which the current takes its extremum
value.

PACS numbers: 05.60.Cd, 05.40.Jc, 02.50.Ey

1. Introduction

Recently, there has been increasing interest in studying the noise-induced transport of Brownian
particles for systems with a spatially periodic potential field [1]. This comes from the desire of
understanding molecular motors [2], nanoscale friction [3], surface smoothening [4], coupled
Josephson junctions [5], optical ratchets and directed motion of laser cooled atoms [6] and
mass separation and trapping schemes at microscale [7].

The focus of research has been on the noise-induced unidirectional motion over the last
decade. A ratchet system is generally defined as a system that is able to transport particles
in a periodic structure with nonzero macroscopic velocity in the absence of macroscopic
force on average. In these systems, directed Brownian motion of particles is generated by
nonequilibrium noise in the absence of any net macroscopic forces and potential gradients
[1]. Typical examples are rocking ratchets [1, 8], flashing ratchets [9], diffusion ratchets [10]
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and correlation ratchets [1, 11]. In all these studies, the potential is taken to be asymmetric
in space. It has also been shown that a unidirectional current can also appear for spatially
symmetric potentials if there exits an external random force either asymmetric or spatially
dependent [1].

The study of current reversal phenomena has given rise to much research activity on
its own; the motivation being the possibility of new particle separation devices superior to
existing methods such as the electrophoretic method for particles of micrometre scale [12]. It
is known that current reversals in ratchet systems can be engendered by varying the system
parameters. The current can be reversed, for example, by a noise of Gaussian force with non-
white power spectrum in the presence of the stationary periodic potential [13]. The current
reversal can also be obtained in two-state ratchets if the long arm is kinked [14]. Bier and
Astumian [15] have also found the current reversal in a fluctuating three-state ratchet. In the
presence of a kangaroo process as the driving force, the current reversal can be triggered by
varying the noise flatness, the ratio of the fourth moment to the square of the second moment
[16]. The current reversal can be induced by both an additive Gaussian white and an additive
Ornstein–Uhlenbeck noise in a correlation ratchet [17]. The current reversal also appears
in forced inhomogeneous ratchets [18]. In the temperature ratchet the competition between
the asymmetric parameter of the potential and the temperature difference may lead to current
reversals [19]. There exist already several works on current reversals in higher dimensional
systems [20]. The current reversal was also obtained in the case of a chemical system [21].

The previous works on the current reversal are limited to the case of one-dimensional
systems and symmetric temporal driving forces. The present work extends the study of the
current reversal to the case of the three competitive driving factors: the asymmetry of the
potential, the coupling between the potentials and the asymmetry of the external force. Based
on the effective potential approach, the 2D problem is simplified to the 1D problem with a
reduced effective potential through eliminating the variable y. It is found that when a driving
factor competes with another one, the current may reverse its direction. There exist two or
three values of temperature at which the current takes its extremum value. Our emphasis is on
finding current reversals and the optimized values of temperature. This is achieved by using a
quasi-steady-state limit to solve the Fokker–Planck equation.

2. Average current of the two-dimensional ratchet

In this paper, we consider the movement of an overdamped Brownian particle moving in a two-
dimensional coupled asymmetric periodic potential with a temporally asymmetric unbiased
external force. The ratchet model is described by the following 2D Langevin equation written
in a dimensionless form [22],

ẋ = −∂U(x, y)

∂x
+ F(t) +

√
2kBT ξx(t),

ẏ = −∂U(x, y)

∂y
+

√
2kBT ξy(t),

(1)

where x, y stands for the position of the Brownian particle, kB is the Boltzmann constant and
T is the absolute temperature. ξx(t) and ξy(t) are the randomly fluctuating Gaussian white
noises with zero mean and with the autocorrelation function 〈ξx(t)ξy(s)〉 = δx,yδ(t − s). Here
〈· · ·〉 denotes an ensemble average over the distribution of the fluctuating forces ξx,y(t). F(t)

is a temporally asymmetric unbiased external periodic force (figure 1), satisfying [23, 24]

F(t + τ) = F(t),

∫ τ

0
F(t) dt = 0, (2)
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Figure 1. Driving force: F(t) which preserved the zero mean 〈F(t)〉 = 0; F(t + τ) = F(t); ε is
the temporally asymmetry parameter.

Figure 2. The two-dimensional ratchet potential (equation (5)) with U0 = 2,� = 1.0 and λ = −2.

F(t) =




1 + ε

1 − ε
F0, nτ � t < nτ +

1

2
τ(1 − ε),

−F0, nτ +
1

2
τ(1 − ε) < t � (n + 1)τ,

(3)

where τ is the period of the driving force, F0 its magnitude and ε the temporally asymmetric
parameter.

The potential U(x, y) is periodic along the x-direction and parabolic along the y-direction,

U(x, y) = U1(x) + 1
2C(x)y2, (4)

with

U1(x) = −U0
[
sin(x) + 1

4� sin(2x)
]
, C(x) = exp[λU1(x)], (5)

where U1(x) is the potential along the x-direction, U0 is the height of the barrier and � is the
asymmetric parameter of the potential along the x-direction. The periodic length of C(x) is
equal to that of U1(x). λ is the coupling parameter between the potentials along x and y. The
form of C(x) is chosen to be equation (5) in order to observe a strong coupling between x
and y degrees of freedom. For any given x, a slice of the potential along the direction of y

is a parabola, and this parabola becomes wide and narrow, periodically. U(x, y) picture with
U0 = 2,� = 1.0 and λ = −2 is plotted in figure 2.
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Based on the effective potential approach [22, 25], the 2D problem is simplified to the 1D
problem with a reduced potential Ueff(x) through eliminating the variable y. We can integrate
over y from −∞ to ∞ in the equilibrium distribution, thus the effective potential is given by

Ueff(x) = −kBT ln

{∫ ∞

−∞
dy exp

[
−U(x, y)

kBT

]}
,

= U1(x) +
1

2
kBT ln

[
C(x)

2πkBT

]
. (6)

Hence, equation (1) reduces to

ẋ = −∂Ueff(x)

∂x
+ F(t) +

√
2kBT ξx(t). (7)

The evolution of the probability density for x is given by the associated Fokker–Planck
equation [1, 26]

∂P (x, t)

∂t
= ∂

∂x

{
kBT

∂P (x, t)

∂x
+ [U ′

eff(x) − F(t)]P(x, t)

}
= −∂j (x, t)

∂x
, (8)

j (x, t) = −[U ′
eff(x) − F(t)]P(x, t) − d

dx
[kBT P (x, t)], (9)

here j (x, t) is the probability current density. The prime stands for the derivative with respect
to the space variable x. P(x, t) is the probability density for the particle at position x and time t.
It satisfies the normalization condition and the periodicity condition:

P(x, t) = P(x + 2π, t), (10)∫ 2π

0
P(x, t) dx = 1. (11)

If F(t) changes very slowly with respect to t, namely, its period is longer than any other
time scale of the system, there exists a quasi-steady state. In this case, j (x, t) is a constant.
From equation (10) we can obtain the solution of equation (9),

P(x, t) = j

kBT
{
1− exp

[−2πF(t)

kBT

]} exp

[
−Ueff(x)−F(t)x

kBT

]∫ x+2π

x

exp

[
Ueff(y)−F(t)y

kBT

]
dy.

(12)

Substituting equation (12) into equation (11), we can obtain the current

j (F (t)) = kBT
{
1 − exp

[− 2πF(t)

kBT

]}
∫ 2π

0 exp
[−Ueff(x)−F(t)x

kBT

]
dx

∫ x+2π

x
exp

[
Ueff(y)−F(t)y

kBT

]
dy

. (13)

The average current is

J = 1

τ

∫ τ

0
j (F (t)) dt. (14)

For a temporally asymmetric force F(t), we can obtain

J = 1
2 (j1 + j2) (15)

with

j1 = (1 − ε)j

(
1 + ε

1 − ε
F0

)
, j2 = (1 + ε)j (−F0). (16)
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Figure 3. Current J versus the coupling parameter λ between the potentials at U0 = 2.0, F0 =
0.5, λc = −4.0, T = 0.5,� = 1.0 and ε = 0.0.

3. Results and discussions

Figure 3 shows the current J as a function of the coupling parameter λ between the potentials
at � = 1.0 and ε = 0.0. From equation (6), we can obtain

Ueff(x) = (
1 + 1

2λkBT
)
U1(x) − 1

2kBT ln 2πkBT . (17)

When 1 + 1
2λkBT = 0, namely λ = λc = −4.0 at kBT = 0.5, the effective potential reduces

to a constant potential and the ratchet effect disappears, so the current is zero. When λ < λc,
the current J is negative. It is easy to find that when λ � λc, the height of the potential is
very high and the particle cannot pass the barrier, so no current can be obtained. There exists
a value of λ at which the current J takes its minimum value. Similarly, when λ > λc, the
current is positive and has a maximum value. Therefore, we can obtain the current reversal by
changing the value of λ, the coupling parameter between the potentials.

Figure 4(a) shows the current J as a function of the negative temporally asymmetric
parameter ε of the driving force at � = 0 and λ = 0. When ε = −1, namely, no external force
acting on the system, J is equal to j (0) = 0, so that no current occurs. When ε = 0, namely, the
driving force is temporally symmetric, therefore, no current can be obtained for a symmetric
potential, also. When −1 < ε < 0, the current J is negative and has a minimum value.
The current J versus the positive temporally asymmetric parameter ε is shown in figure 4(b).
The current J is positive for ε > 0 and increases with ε. When we change the sign of ε, the
current reversal can occur. The current J has the nonlinear function of ε. The temporally
asymmetry is a way of inducing a net current.

The current J versus the asymmetric parameter � of the potential is shown in figure 5 at
λ = 0.0 and ε = 0.0. When � = 0.0, namely, the potential is symmetric, the current vanishes
for the symmetric external force. When � < 0, the current is negative. When � � 0, the
height of the potential is very high and the particle cannot pass the barrier, so there is no
current. There is a value of � at which the current J takes its minimum value. Similarly,
when � > 0, the current is positive and there exists a maximum value. Hence, the current can
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Figure 4. Current J versus the temporally asymmetric parameter ε of the driving force at
U0 = 2.0, F0 = 0.5, T = 0.5,� = 0.0 and λ = 0.0: (a) ε is negative; (b) ε is positive.
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Figure 5. Current J versus the asymmetric parameter � between the potentials at U0 = 2.0, F0 =
0.5, T = 0.5, λ = 0.0 and ε = 0.0.

reverse its direction by changing the sign of �. The asymmetry of the potential is a factor for
obtaining a net current.

In figure 6, we plot the current J as a function of temperature T for different values of
the coupling parameter λ at � = 1.0 and ε = 0.0. In this case, the competition between
the asymmetry parameter � of the potential and the coupling parameters λ is investigated.
When T → 0, J tends to zero. Therefore, the particle cannot pass the barrier and there is no
current. When T → ∞, so that the thermal noise is very large, the ratchet effect disappears
and J tends to zero, also. When λ = −1.0, the current is positive, there exists a peak. As
the coupling parameter λ decreases, the position of the peak moves to zero. A vale even
appears for λ = −5.0. The current may reverse its direction as increasing temperature T. The
competition between � and λ may lead to current reversal.
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Figure 6. Current J versus temperature T for different values of the coupling parameters λ at
U0 = 2.0, F0 = 0.5,� = 1.0 and ε = 0.0.
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Figure 7. Current J versus temperature T for different values of the asymmetric parameters of the
driving force ε at U0 = 2.0, F0 = 0.5, Tc = 0.5,� = 0.0 and λ = −4.0.

Figure 7 shows the current J as a function of temperature T for different values of the
asymmetric parameters ε of the driving force at � = 0.0 and λ = −4.0. In this case, we
discuss the competition between λ and ε. From equation (17), when T = Tc = 0.5, the
potential reduces to a constant and no current can be obtained. When T → 0 and T → ∞,
the current J tends to zero, also. So there are two optimized values of T at which the current
J takes its extremum values. There exist two peaks or two vales in J–T figure.

The current J as a function of temperature T is shown in figure 8 for the combination of
� = 1.0, λ = −6.0 and ε = 0.2. In this case, the competitions among the asymmetric
parameter of the potential, the coupling parameter of the potential and the temporally
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Figure 8. Current J versus temperature T at U0 = 2.0, F0 = 0.5,� = 1.0, ε = 0.2 and λ = −6.0.
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Figure 9. Current J versus the coupling parameter λ between the potentials for the case of C(x) =
1 − λ sin(x + φ). φ = π/2, T = 4.0 and the other parameters are the same as that in figure 3.

asymmetric parameter of the external force are investigated. From the figure, it is easy
to find that there are three values of T at which the current J takes its extremum value. There
are two peaks and a vale in figure 8. The current can reverse its direction as the temperature
T changes.

The form of C(x) is chosen to be equation (5) in order to observe a strong coupling
between x and y degrees of freedom. This coupling term is a very special form which makes
the analytic calculations. In order to prove the generality of our findings, we investigate the
system with a different coupling term,

C(x) = 1 − λ sin(x + φ), (18)

where 0 � |λ| < 1 and φ is a phase shift. The numerical results are shown in figures 9
and 10.
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Figure 10. Current J versus temperature T for different values of the coupling parameters λ for
the case of C(x) = 1 − λ sin(x + φ). φ = π/2 and the parameters are the same as that in figure 6.

Figure 9 shows the current J as a function of λ for the coupling term given by equation (18).
It is found that the current is positive for λ > λc, zero at λ = λc and negative for λ < λc.
Therefore, we can obtain the current reversal by changing the value of the coupling parameter.
The result is similar to that in figure 3.

Figure 10 shows the current as a function of temperature T for different values of
the coupling parameters with the coupling term given by equation (18). In this case, we
investigate the competition between the asymmetry parameter � of the potential and the
coupling parameter λ. When λ = 0.1, the current is always positive and there exists a peak.
As the coupling parameter λ increases, the height of the peak decreases and a vale appears at
λ = 0.9. For λ = 0.7 and 0.9, the current may reverse its direction as increasing temperature
T. The competition between � and λ may lead to current reversals. The same results can be
found in figure 6.

In order to prove the generality of the previous results, we have numerically studied a
different coupling term (see equation (18)) finding that our conclusions are indeed similar to
those analytically obtained for the choice made in equation (5).

4. Concluding remarks

We study the transport of an overdamped Brownian particle moving in a two-dimensional
asymmetric periodic potential in the presence of an asymmetric unbiased external force.
Based on the effective potential approach, the 2D problem is simplified to the 1D problem
with a reduced effective potential through eliminating the variable y. It is found that the
asymmetric parameter ε of the external force, the asymmetric parameter � of the potential
and the coupling parameter between the potentials are the three pivotal factors for obtaining
a net current. When two or more driving factors compete each other, the current may reverse
its direction. When the three driving factors act on the system, there may be two or three
optimized values of temperature T at which current J takes its extremum value. As the
traditional viewpoint thinks there is only one peak in J–T figure, there may exist two peaks
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and one vale in our coupling system. We also investigate the transport for a different coupling
term shown in equation (18) and find that the results are similar for the two cases.
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